Abstract hyperbolic integrodifferential equations
نویسندگان
چکیده
منابع مشابه
Hyperbolic singular perturbations for integrodifferential equations
We study the convergence of solutions of * Co E-m (T.-J. X 0096-3 doi:10. e2u00ðt; eÞ þ u0ðt; eÞ 1⁄4 ðeAþ BÞuðt; eÞ þ R t 0 Kðt sÞðeAþ BÞuðs; eÞds þf ðt; eÞ; tP 0; uð0; eÞ 1⁄4 u0ðeÞ; u0ð0; eÞ 1⁄4 u1ðeÞ; 8< : to solutions of w0ðtÞ 1⁄4 BwðtÞ þ R t 0 Kðt sÞBwðsÞdsþ f ðtÞ; tP 0; wð0Þ 1⁄4 w0; when e ! 0. Here A and B are linear unbounded operators in a Banach space X , KðtÞ is a linear bounded opera...
متن کاملConvergence for Hyperbolic Singular Perturbation of Integrodifferential Equations
By virtue of an operator-theoretical approach, we deal with hyperbolic singular perturbation problems for integrodifferential equations. New convergence theorems for such singular perturbation problems are obtained, which generalize some previous results by This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, an...
متن کاملImpulsive integrodifferential Equations and Measure of noncompactness
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
متن کاملIntegrodifferential Equations with Analytic Semigroups
In this paper we study a class of integrodifferential equations considered in an arbitrary Banach space. Using the theory of analytic semigroups we establish the existence, uniqueness, regularity and continuation of solutions to these integrodifferential equations.
متن کاملBounds of Solutions of Integrodifferential Equations
and Applied Analysis 3 Define a function m t by m t v t ∫ t 0 g s v s ds v t ∫ t 0 g s ds, 2.5 then m 0 v 0 u0, v t ≤ m t , v′ t ≤ f t m t , 2.6 m′ t 2g t v t v′ t ( 1 ∫ t 0 g s ds ) ≤ m t [ 2g t f t ( 1 ∫ t 0 g s ds )] . 2.7 Integrating 2.7 from 0 to t, we have m t ≤ u0 exp (∫ t 0 ( 2g s f s ( 1 ∫ s 0 g σ dσ )) ds ) . 2.8 Using 2.8 in 2.6 , we obtain v′ t ≤ u0f t exp (∫ t 0 ( 2g s f s ( 1 ∫ s ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1981
ISSN: 0022-247X
DOI: 10.1016/0022-247x(81)90168-2